Home Page
Flow between two parallel plates with a distance $h$

Governing equations: $$\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial W}{\partial z}=0$$ $$\frac{\partial U}{\partial t}+U\frac{\partial U}{\partial x}+V\frac{\partial U}{\partial y}+W\frac{\partial U}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\mu}{\rho}\left ( \frac{\partial^2 U}{\partial x^2}+\frac{\partial^2 U}{\partial y^2}+\frac{\partial^2 U}{\partial z^2} \right )$$ $$\frac{\partial V}{\partial t}+U\frac{\partial V}{\partial x}+V\frac{\partial V}{\partial y}+W\frac{\partial V}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial y}+\frac{\mu}{\rho}\left ( \frac{\partial^2 V}{\partial x^2}+\frac{\partial^2 V}{\partial y^2}+\frac{\partial^2 V}{\partial z^2} \right )$$ $$\frac{\partial W}{\partial t}+U\frac{\partial W}{\partial x}+V\frac{\partial W}{\partial y}+W\frac{\partial W}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+\frac{\mu}{\rho}\left ( \frac{\partial^2 W}{\partial x^2}+\frac{\partial^2 W}{\partial y^2}+\frac{\partial^2 W}{\partial z^2} \right )$$ Considering a bidimensional fully developed fluid flow in a steady state,
$$\frac{\partial V}{\partial y}=0 \Rightarrow V(y)=C_1$$ As $V(0)=0$ at the lower boundary, $C_1=0$ so we conclude that: $$V(y)=0$$ And $$0=-\frac{1}{\rho} \frac{\partial p}{\partial x}+\frac{\mu}{\rho}\frac{\partial^2 U}{\partial y^2} \Leftrightarrow \frac{\partial^2 U}{\partial y^2}=\frac{1}{\mu} \frac{\partial p}{\partial x}$$ $$0=-\frac{1}{\rho} \frac{\partial p}{\partial y} \Leftrightarrow \frac{\partial p}{\partial y}=0 $$ Integrating the first equation two times: $$U(y)=\int \int \frac{1}{\mu} \frac{\partial p}{\partial x}dydy=\int \frac{1}{\mu} \frac{\partial p}{\partial x}y+C_2 dy=\frac{1}{2\mu} \frac{\partial p}{\partial x}y^2+C_2y+C_3$$ Since at the plates, $y=0$ and $y=h$, we have the no-slip condition: $$\left\{\begin{matrix} U(0)=0\\ U(h)=0 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 0=\frac{1}{2\mu} \frac{\partial p}{\partial x}0^2+C_20+C_3\\ 0=\frac{1}{2\mu} \frac{\partial p}{\partial x}h^2+C_2h+C_3\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} C_3=0\\ C_2=-\frac{1}{2\mu} \frac{\partial p}{\partial x}h\end{matrix}\right.$$ The velocity profile is then: $$U(y)=\frac{1}{2\mu} \frac{\partial p}{\partial x}y^2-\frac{1}{2\mu} \frac{\partial p}{\partial x}hy$$ $$U(y)=\frac{1}{2\mu} \frac{\partial p}{\partial x}(y^2-hy)$$