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Fundação Calouste Gulbenkian, Lisboa, 2010.

Murteira Bento, Antunes Marilia, Probabilidades e Estat́ıstica, vol. 1, Escolar
Editora, Lisboa, 2012.

Andy Field, Jeremy Miles, Zoe Field, Discovering Statistics Using R - SAGE
Publications Ltd, 1st edition (April 5, 2012).

Hadley Wickham, Garret Grolemund, R for Data Science: Import, Tidy, Transform,
Visualiza, and Model Data - O’Reilly Media 1st edition (January 17, 2017).

Murray R. Spiegel, Pedro Consentino, Carlos de Lucena, Estat́ıstica, McGraw-Hill,
São Paulo, 1976.

Sheldon M. Ross, Introduction to Probability and Statistics For Engineers and
Scientists - Fifth Edition, Elsevier Inc, 2014.

Emanuel A. R. Camacho (ISEC Lisboa) Data Science in Aerospace 2024/2025 2 / 217



Evaluation

Data Science in Aerospace (100% [20/20])

Frequencies (70% [14/20]) + Project (30% [6/20])

Frequency 1 (35% [7/20]) (15/05/2025)

Frequency 2 (35% [7/20]) (06/06/2025)

Report (30% [6/20] (13/06/2025)

or

Exam (100% [20/20]) ∨ Exam (70% [14/20]) + Project (30% [6/20])

Final = max {100% Exam, 70% Exam + 30% Project}

There is no minimum score for any component of the evaluation. [10/20] is required to pass.
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Data Science
Data Science Interactions

Population

Data

Sample

Probability Theory Statistical Inference

Data: The information collected which serves as the foundation for analysis.

Population: Represents the entire group or dataset that is the subject of study.

Sample: A subset of the population, selected to make inferences about the population.

Probability Theory: The mathematical framework used to model randomness and
uncertainty in data.

Statistical Inference: The process of drawing conclusions about the population based
on sample data.
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Data Science
Population and Sample

Population Sample

Sampling

Inference
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Data Science
Population and Sample

Population Sample

A population is the entire collection
of subjects affected by your research
question.

A sample is a subset of the popula-
tion you study.

Measurements taken from a whole
population are called parameters.

Measurements taken from a sample
are called statistics.

Data for an entire population is of-
ten very difficult or impossible to
collect.

When population data is unavail-
able, we use sample data to make
inferences about the population.

If you do have data for a whole
population, your parameters will be
“true” measures of some population
characteristic.

Sample data yield statistics, which
can be used to estimate population
parameters.
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Data Science
Sampling Techniques

Probability Sampling

Simple Random Sampling: Every individual in the population has an equal
chance of being selected.

Stratified Sampling: The population is divided into subgroups, and samples
are taken from each subgroup.

Systematic Sampling: Individuals are randomly selected from a list or
sequence at regular intervals.

Cluster Sampling: The population is divided into clusters, and entire
clusters are randomly selected for the sample.

Multistage Sampling: Combines multiple sampling methods, often used for
large populations
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Data Science
Sampling Techniques

Non-probability Sampling

Convenience Sampling: Participants are chosen based on ease of access.

Voluntary Response Sampling: Participants self-select to be part of the
study.

Purposive (Judgmental) Sampling: Researchers select participants based on
specific criteria or purpose.

Snowball Sampling: Existing participants recruit others, often used for
hard-to-reach populations.

Quota Sampling: A sample is created to represent certain characteristics or
proportions in the population.
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Data Science
Measurement Scales

Measurement scales, also known as levels of measurement, describe how variables
are classified and the type of information they represent. There are four main types
of measurement scales, each with increasing levels of precision and mathematical
applicability:

Nominal Scale

Ordinal Scale

Interval Scale

Ratio Scale
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Data Science
Measurement Scales

Nominal Scale (Categorical, No Order)

Definition: Data is grouped into categories without any inherent ranking.

Types of aircraft: Boeing, Airbus, Cessna.

Airport codes: JFK, LAX, ORD.

Flight status: On-time, delayed, canceled.

Airline names: Delta, American Airlines, Lufthansa.
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Data Science
Measurement Scales

Ordinal Scale (Categorical, Ordered)

Definition: Data is grouped into categories with a meaningful order, but the
intervals between ranks are not uniform.

Passenger seating classes: Economy, Business, First Class.

Pilot experience levels: Trainee, Junior, Senior.

Turbulence severity: Light, Moderate, Severe.

Customer satisfaction ratings for a flight: Poor, Fair, Good, Excellent.

Emanuel A. R. Camacho (ISEC Lisboa) Data Science in Aerospace 2024/2025 15 / 217



Data Science
Measurement Scales

Interval Scale (Ordered with Equal Intervals, No True Zero)

Definition: Data is ordered with equal intervals between values but lacks a true
zero point.

Temperature inside the cabin (measured in Celsius or Fahrenheit).

Time of day for departure or arrival (e.g., 2 PM vs. 3 PM).

Altitude above sea level in standard atmospheric pressure levels (e.g., flight
levels in hundreds of feet).
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Data Science
Measurement Scales

Ratio Scale (Ordered with Equal Intervals and a True Zero)

Definition: Data is ordered with equal intervals and a true zero point; ratios are
meaningful.

Flight duration (e.g., a flight lasting 0 hours means no flight occurred).

Distance traveled by an aircraft (e.g., miles or kilometers).

Fuel consumption during a flight (e.g., gallons or liters).

Aircraft weight (e.g., kilograms or pounds).
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Data Science
Data Processing

1 Collection: Gathering raw data from various sources, ensuring it is relevant and
accurate.

2 Preparation: Cleaning and organizing the data by removing errors, duplicates, or
irrelevant information (also known as data cleansing).

3 Input: Entering the prepared data into a processing system, either manually or
through automated methods.

4 Processing: Transforming the data using techniques such as sorting, filtering,
aggregating, and statistical calculations to extract meaningful insights.

5 Output and Interpretation: Presenting the processed data in readable formats
like graphs, tables, or charts for interpretation and decision-making.

6 Storage: Storing the processed data for future use or further analysis.
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Data Science
Data Treatment & Outliers

Handling missing data

Remove incomplete records (listwise deletion).
Impute missing values using methods such as: Mean, median, or mode substitution.
Regression or machine learning models. Multiple imputation techniques.
Use statistical techniques that can handle missing data directly

Dealing with outliers

Identify outliers using statistical methods (e.g., Z-scores, IQR method).
Remove the outliers (if they are errors or irrelevant to the analysis).
Transform the data (e.g., log transformation) to reduce their impact.
Retain them if they represent meaningful phenomena.
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Data Science
Data Treatment & Outliers

Data normalization and scaling

Adjusting data values to ensure consistency across variables, especially when they have
different units or scales.
Min-Max Scaling: Rescale data to a fixed range (e.g., 0 to 1).
Standardization: Transform data to have a mean of 0 and a standard deviation of 1.

Encoding categorical variables

Definition: Converting non-numerical (categorical) data into numerical formats for
analysis.
One-Hot Encoding: Create binary columns for each category.
Label Encoding: Assign numerical labels to categories.
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Data Science
Data Treatment & Outliers

Removing duplicates

Identifying and removing duplicate records that can skew results.
Use software tools or algorithms to detect and eliminate duplicate rows or entries.

Addressing data inconsistencies

Resolving discrepancies in data caused by errors in recording or formatting.
Standardizing date formats (e.g., MM/DD/YYYY vs. DD/MM/YYYY).
Correcting misspelled entries in categorical variables.
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Data Science
Data Treatment & Outliers

Transforming data

Applying mathematical transformations to make the data suitable for statistical
methods.
Logarithmic transformation for skewed data.
Square root transformation for reducing variance.
Binning continuous variables into categories.

Dealing with Multicollinearity

Multicollinearity occurs when independent variables are highly correlated.
Remove one of the correlated variables.
Combine correlated variables using several techniques.
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Computer Data Processing
Computer Data Processing with Python

“Python is a programming language that lets you work quickly and
integrate systems more effectively”

Download at: https://www.python.org

Library/Module Feature

SciPy Stats Provides both discrete (e.g., stats.binom,
stats.poisson, stats.geom) and continuous
distributions (e.g., stats.norm, stats.expon,
stats.beta), along with methods like .pmf(),
.pdf(), .cdf(), and .rvs().

Python statistics Module Offers summary statistical functions such as
mean, variance, stdev, and quantiles.
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Computer Data Processing
Computer Data Processing with Python

“Python is a programming language that lets you work quickly and
integrate systems more effectively”

Download at: https://www.python.org

NumPy Facilitates random variable generation
through functions like np.random.normal,
np.random.poisson, and np.random.choice.

Pandas Provides descriptive statistics using meth-
ods such as DataFrame.describe(),
DataFrame.mean(), and DataFrame.std().

Statsmodels Includes tools for statistical modeling with func-
tions for regression, hypothesis testing, and
time-series analysis.
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Descriptive Statistics
Data Visualization

Use bar charts or pie charts for categorical comparisons.
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Descriptive Statistics
Data Visualization

Use histograms, box plots, or density plots for distributions.
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Descriptive Statistics
Data Visualization

Use scatter plots or bubble charts for relationships between variables.
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Descriptive Statistics
Measurements of Central Tendency

Sample Mean (Arithmetic Average)

The sample mean, designated by x̄, is defined by

x̄ =
1

n

n∑
k=1

xk (1)

The computation of the sample mean can often be simplified by noting that if for
constants a and b

yi = axi + b, i = 1, . . . , n (2)
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Descriptive Statistics
Measurements of Central Tendency

Sample Mean (Arithmetic Average)

Then the sample mean of the data set y1, . . . , yn is

ȳ =
1

n

n∑
i=1

(axi + b) =
1

n

n∑
i=1

axi +
1

n

n∑
i=1

b = ax̄+ b (3)

Uses all data points

Excellent measurement when data is symmetrically distributed

Highly affected by outliers or skewed data
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Descriptive Statistics
Measurements of Central Tendency

Sample Mean (Arithmetic Average)

When using a frequency table listing, we have k distinct values v1, . . . , vk having
corresponding frequencies f1, . . . , fk. Since such a data set consists of

n =

k∑
i=1

fi

observations, with the value vi appearing fi times, for each i = 1, . . . , k, it follows
that the sample mean of these n data values is

x̄ =
1

n

k∑
i=1

vifi (4)
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Descriptive Statistics
Measurements of Central Tendency

Median (Middle Value)

Another statistic used to indicate the center of a data set is the sample median.
In simple terms, it is the middle value when the data set is arranged in increasing
order.

Order the values of a data set of size n from smallest to largest:

If n is odd, the sample median is the value in position (n+ 1)/2

If n is even, it is the average of the values in positions n/2 and n/2 + 1.

Resistant to outliers

Useful for skewed distributions or ordinal data

Does not consider directly all data points
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Descriptive Statistics
Measurements of Central Tendency

Mode (Most Frequent Value)

Another statistic that has been used to indicate the central tendency of a data
set is the sample mode, defined to be the value that occurs with the greatest
frequency. If no single value occurs most frequently, then all the values that
occur at the highest frequency are called modal values.

Useful for categorical data

May not exist or may have multiple modes in some datasets
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Descriptive Statistics
Measurements of Dispersion

Sample Variance

The sample variance, call it s2, of the data set x1, · · · , xn is defined by

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (5)

Provides a precise numerical measure of variability

Units are squared, making it less intuitive than standard deviation

Sensitive to outliers due to squaring deviations
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Descriptive Statistics
Measurements of Dispersion

Sample Standard Deviation

The positive square root of the sample variance is called the sample standard
deviation. The quantity s, is mathematically defined as

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (6)

Expressed in original units for easy interpretation.
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Descriptive Statistics
Measurements of Dispersion

Coefficient of Variation (CV )

The coefficient of variation (CV ) is a statistical measure that represents the
ratio of the standard deviation (s) to the mean (x̄) of a data set. It is often
expressed as a percentage and is used to assess the relative variability or
dispersion of data compared to its mean. The formula is:

CV =
s

x̄
× 100 (7)

The CV is unitless, allowing for comparisons between data sets with
different units or scales.
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Descriptive Statistics
Measurements of Asymmetry

Pearson’s Second Coefficient of Skewness

The Pearson’s second coefficient of skewness is a measure used to quantify the
asymmetry of a probability distribution around its mean. It is given by

3(mean−median)

standard deviation
=

3(x̄−Med)

s
(8)

Symmetric Distribution: If the data is perfectly symmetric, the mean and
median are equal.

Positive Skew (Right-Skewed): If the mean is greater than the median, the
skewness will be positive.

Negative Skew (Left-Skewed): If the mean is less than the median, the
skewness will be negative.
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Descriptive Statistics
Additional Statistical Tools

Five-Number Summary

Describe the center and spread of data

Identify potential outliers using the interquartile range (IQR = Q3−Q1).

min Q1 Median Q3 max

range = maxx−minx (9)

IQR = Q3−Q1 (10)
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Descriptive Statistics
Additional Statistical Tools

z-Score

A z-score is a statistical tool that indicates how many standard deviations a
particular data point is from the mean of a dataset.

z =
x− x̄

s
(11)

Assumes normal distribution for meaningful interpretation.

Provides a standardized way to compare values across datasets.

Helps identify unusual or extreme values in data. Typically, values with a
z-score beyond ±2 or ±3 indicate outliers.

Useful statistical tool for hypothesis testing.

Emanuel A. R. Camacho (ISEC Lisboa) Data Science in Aerospace 2024/2025 40 / 217



Descriptive Statistics
Paired Data Sets and the Sample Correlation Coefficient

Sample Correlation Coefficient

Consider the data pairs (xi, yi), i = 1, . . . , n. The sample correlation coefficient,
call it r, of the data pairs (xi, yi), i = 1, . . . , n, is defined by

−1 ≤ r =

n∑
i=1

(xi − x̄)(yi − ȳ)√√√√ n∑
i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

≤ 1 (12)

When r > 0, we say that the sample data pairs are positively correlated

When r < 0, we say that the sample data pairs are negatively correlated
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Descriptive Statistics

Descriptive Statistics
End of Section

Descriptive Statistics Exercises
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Probability
Introduction & Fundamental Concepts

In simple terms, probability is a quantification of likelihood of an event occurring,
expressed as a number between 0 and 1. The probability of an event A occurring is
calculated using

P (A) =
Number of favorable outcomes

Total number of outcomes
. (13)

“two outcomes = equal probabilities” only applies when the outcomes are equally likely

P (A) =
Likelihood of favorable outcome

Sum of likelihoods of all possible outcomes
(14)

The probability of the outcome will then be observable as being the proportion of
the experiments that result in the outcome.
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Probability
Counting Techniques

Frequently, to compute probabilities it is often necessary to be able to effectively count
the number of different ways that a given event can occur. To do this, we will make use of
combinatorics.

Generalized Basic Principle of Counting

If r experiments that are to be performed are such that the first one may result
in any of n1 possible outcomes, and if for each of these n1 possible outcomes
there are n2 possible outcomes of the second experiment, and if for each of the
possible outcomes of the first two experiments there are n3 possible outcomes of
the third experiment, and if, . . . , then there are a total of n1 · n2 · · ·nr possible
outcomes of the r experiments.

n1 × n2 × · · · × nr (15)
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Probability
Counting Techniques

Permutations

The number of permutations of n objects taken r at a time is

P (n, r) =
n!

(n− r)!
(16)

where n! is the n factorial.

Boarding Sequences

Runway Departure Orders

Flight Schedules

Cargo Loading
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Probability
Counting Techniques

Combinations

The number of combinations of n objects taken r at a time is

C(n, r) =

(
n

r

)
=

n!

r!(n− r)!
(17)

where n! is the n factorial.

Air Cargo Palletization

Crew Pairing and Scheduling

Aircraft Maintenance Planning

Airport Slot Allocation
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Probability
Counting Techniques

Basic Principle of Counting

n1 × n2 × · · · × nk (18)

Factorials
n! = n× (n− 1)× (n− 2)× · · · × 1 (19)

Permutations

P (n, r) =
n!

(n− r)!
(20)

Combinations

C(n, r) =

(
n

r

)
=

n!

r!(n− r)!
(21)
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Probability

Probability
Pause

Combinatorial Analysis Exercises
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Probability
Sample Space & Events

Consider an experiment whose outcome is not predictable with certainty in advance.
Although the outcome of the experiment will not be known in advance, let us suppose
that the set of all possible outcomes is known. This set of all possible outcomes of an
experiment is known as the sample space of the experiment and is denoted by S.

Example: Takeoff Outcome

S = {S,A,E,R} (22)

Successful Takeoff (S)

Aborted Takeoff (A)

Engine Failure during Takeoff (E)

Runway Excursion (R)
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Probability
Sample Space & Events

Any subset E of the sample space, S, is known as an event.

For any two events E and F

The new event E ∪ F is called the union of the events E and F

The new event E ∩ F is called the intersection of E and F

When E ∩ F = ∅ (cannot both occur), E and F are said to be mutually
exclusive

The new event E (or Ec) is referred to as the complement of E.

If all of the outcomes in E are also in F , then E ⊂ F , meaning that E is
contained in F .

If E ⊂ F and F ⊂ E, then the two events are equal, E = F .
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Probability
Algebra of Events

Commutative law

E ∪ F = F ∪ E

E ∩ F = F ∩ E

Associative law

(E ∪ F ) ∪G = E ∪ (F ∪G)

(E ∩ F ) ∩G = E ∩ (F ∩G)

Distributive law

(E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G)

(E ∩ F ) ∪G = (E ∪G) ∩ (F ∪G)
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Probability
Probability Axioms

Axiom 1

The probability of any event is always some number between 0 and 1

0 ≤ P (E) ≤ 1 (23)

This means that probabilities cannot be negative, reflecting the intuitive idea
that an event cannot occur less than “never”. Similarly, it cannot occur more
than always.
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Probability
Probability Axioms

Axiom 2

The probability of the entire sample space S, which represents all possible
outcomes of an experiment, is equal to 1:

P (S) = 1 (24)

This axiom ensures that something in the sample space will occur with certainty
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Probability
Probability Axioms

Axiom 3

For any countable sequence of mutually exclusive events E1, E2, E3, . . . , the
probability of their union is equal to the sum of their individual probabilities:

P

(
n⋃

i=1

Ei

)
=

n∑
i=1

P (Ei) n = 1, 2, . . . ,∞ (25)

This axiom governs how probabilities combine for events that cannot occur
simultaneously
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Probability
Fundamental Concepts

Prepositions

P (Ē) = 1− P (E) (26)

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ) (27)

E F
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Probability
Conditional Probability

When some partial information concerning the result of the experiment is
available, or there is the need to recalculate a probability in light of additional
information, we are interested in conditional probability.

Conditional probability is the probability of an event occurring given that
another event has already occurred. The conditional probability of event E given
event F (assuming P (F ) > 0) is defined as:

P (E|F ) =
P (E ∩ F )

P (F )
(28)

This formula automatically adjusts the sample space to consider only the
outcomes where F has occurred.
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Probability
Bayes’ Formula

Bayes’ Formula

Bayes’s theorem indicates that for events E and F , where P (F ) > 0,

P (E|F ) =
P (F |E)P (E)

P (F )
(29)

P (E|F ) is the probability of observing event E given that F occured

P (F |E) is the probability of observing event F given that E occured

P (E) and P (F ) are the probabilities of observing events E and F ,
respectively, without any given conditions.
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Probability
Law of Total Probability

Law of Total Probability

Suppose that F1, F2, . . . , Fn are mutually exclusive events such that

n⋃
i=1

Fi = S (30)

This means that exactly one of the events F1, F2, . . . , Fn must occur. Considering
now the fact that events E ∩ Fi are mutually exclusive

E =

n⋃
i=1

EFi (31)
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Probability
Law of Total Probability

Law of Total Probability

This means that exactly one of the events F1, F2, . . . , Fn must occur. Considering
now the fact that events E ∩ Fi are mutually exclusive

E =

n⋃
i=1

EFi (32)

P (E) =
n∑

i=1

P (E ∩ Fi) (33)

P (E) =

n∑
i=1

P (E|Fi)P (Fi) (34)
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Probability
Independent Events

We have seen before that P (E|F ), the conditional probability of E given F , may
not be equal to P (E), the unconditional probability of E. What happens when
these are the same?

P (E|F ) = P (E) (35)

P (E ∩ F )

P (F )
= P (E) (36)

P (E ∩ F ) = P (E)P (F ) (37)

In this conditions, the two events E and F are said to be independent. These
conditions mean that the probability of both events happening together is simply
the product of their individual probabilities.
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Probability
Independent Events

Independent Events

P (E ∩ F ) = P (E)P (F ) (38)

Important Notes

- Independence is different from mutual exclusivity. Two mutually
exclusive events cannot happen at the same time (P (E ∩ F ) = 0),
whereas independent events can occur simultaneously.
- For more than two events (E,F,G, . . .), pairwise independence (each
pair is independent) does not necessarily imply mutual independence (all
combinations of events are independent).
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Probability

P (E) ∈ [0, 1] (39)

P (E) = 1− P (E) (40)

P (E ∪ F ) = P (E) + P (F ) (when mutually exclusive) (41)

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ) (42)

P (E ∩ F ) = P (E)P (F ) (when independent) (43)

P (E ∩ F ) = P (E|F )P (F ) = P (F |E)P (E) (44)

P (E|F ) =
P (E ∩ F )

P (F )
=

P (F |E)P (E)

P (F )
(45)
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Probability

Probability
Pause

Elementary Probability Theory Exercises
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Probability
Random Variables

A random variable is a mathematical concept used in probability and statistics
to represent numerical outcomes of random phenomena or experiments. It is a
function that assigns a numerical value to each possible outcome in the sample
space of a random process.

Discrete Random Variables: These take on a countable set of values, such as
integers. For example, the number of heads in 10 coin flips is discrete.

Continuous Random Variables: These can take any value within a
continuous range, such as measurements of height or temperature.
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Probability
Discrete Random Variables

For a discrete random variable X, we define the probability mass function p(a) of
X by

p(a) = P{X = a} (46)

The probability mass function p(a) is positive for at most a countable number of
values of a. That is, if X must assume one of the values x1, x2, . . ., then

p(xi) > 0, i = 1, 2, . . . (47)

p(x) = 0, all other values of x (48)
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Probability
Discrete Random Variables

Since X must take on one of the values xi, we have

∞∑
i=1

p(xi) = 1 (49)

The cumulative distribution function F can be expressed in terms of p(x) by

F (a) =
∑

all x≤a

p(x) (50)
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Probability
Continuous Random Variables

For a continuous random variable X, there is a nonnegative function f(x),
defined for all real x ∈ ]−∞,∞[, having the property that for any set B of real
numbers

P{X ∈ B} =

∫
B
f(x) dx (51)

The function f(x) is called the probability density function of the random
variable X. Since X must assume some value, f(x) must satisfy

P{X ∈ ]−∞,∞[} =

∫ ∞

−∞
f(x) dx = 1 (52)
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Probability
Continuous Random Variables

All probability statements about X can be answered using f(x). For instance,
when B = [a, b], we obtain that

P{X ∈ B} =

∫
B
f(x) dx (53)

P{a ≤ X ≤ b} =

∫ b

a
f(x) dx (54)

When considering that a = b, then

P{X = a} =

∫ a

a
f(x) dx = 0 (55)
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Probability
Continuous Random Variables

The relationship between the cumulative distribution F and the probability
density function f is expressed by

F (a) = P{X ∈ ]−∞, a]} =

∫ a

−∞
f(x) dx (56)

Differentiating both sides yields

d

da
F (a) = f(a) (57)
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Probability
Expectation

Expectation

One of the most important concepts in probability theory is that of the
expectation of a random variable.

If X is a discrete random variable taking on the possible values x1, x2, . . ., then
the expectation or expected value of X, denoted by E[X], is defined by

E[X] =
∑
i

xiP{X = xi} (58)

Hence, the expected value of X is a weighted average of the possible values that
X can take on, each value being weighted by the probability that X assumes it.
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Probability
Expectation

Expectation

We can also define the expectation of a continuous random variable. Suppose
that X is a continuous random variable with probability density function f .
Since, for dx small,

f(x) dx ≈ P{x < X < x+ dx} (59)

it follows that a weighted average of all possible values of X, with the weight
given to x equal to the probability that X is near x, is just the integral over all x
of xf(x) dx. Hence, it is natural to define the expected value of X by

E[X] =

∫ ∞

−∞
xf(x)dx (60)
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Probability
Expectation

Expectation of a Function of a Random Variable

If X is a discrete random variable with probability mass function p(x), then
for any real-valued function g,

E[g(X)] =
∑
x

g(x)p(x) (61)

If X is a continuous random variable with probability density function f(x),
then for any real-valued function g,

E[g(X)] =

∫ ∞

−∞
g(x)f(x) dx (62)
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Probability
Properties of the Expected Value

Property

Let X be a discrete (or continuous) random variable with probability mass
function (or probability density function), f(x), and let a ̸= 0 and b be real
constants. The expected value of aX + b is:

E[aX +B] = aE[X] + b (63)

In the discrete case,

E[aX + b] =
∑
x

(ax+ b)p(x) = a
∑
x

xp(x) + b
∑
x

p(x) = aE[X] + b. (64)
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Probability
Properties of the Expected Value

Property

Let X be a discrete (or continuous) random variable with probability mass
function (or probability density function), f(x), and let a ̸= 0 and b be real
constants. The expected value of aX + b is:

E[aX +B] = aE[X] + b (65)

In the continuous case,

E[aX + b] =

∫ ∞

−∞
(ax+ b)f(x)dx = a

∫ ∞

−∞
xf(x)dx+ b

∫ ∞

−∞
f(x)dx = aE[X] + b.

(66)
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Probability
Simple Moments & Central Moments

Simple Moments

Simple moments provide information about the distribution’s location and scale.

The expected value of a random variable X, E[X], is also referred to as the mean
or the first moment of X. The quantity E[Xn], n ≥ 1, is called the nth moment
of X.

Discrete case: E[Xn] =
∑
x

xnp(x) (67)

Continuous case: E[Xn] =

∫ ∞

−∞
xnf(x) dx (68)
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Probability
Simple Moments & Central Moments

Central Moments

Central moments are calculated about the mean of the distribution, focusing on
deviations from this central point, describing variability and shape.

Let X be a random variable and let n be a positive integer. The expected value
of (X − E(X))n, known as the central moment of order n of X, if it exists, is
given by

Discrete case: E[(X − E(X))n] =
∑
x

(x− E(X))np(x) (69)

Continuous case: E[(X − E(X))n] =

∫ ∞

−∞
(x− E(X))nf(x) dx (70)
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Probability
Second Central Moment - Variance

Variance as the Second Central Moment

If X is a random variable with mean µ, then the variance of X, denoted by
Var(X), is defined by

Var(X) = E[(X − µ)2] (71)

Discrete case: Var(X) = E[(X − E[X])2] =
∑
x

(x− E[X])2p(x) (72)

Continuous case: Var(X) = E[(X − E[X])2] =

∫ ∞

−∞
(x− E[X])2f(x) dx (73)
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Probability
Variance

Alternative Formula

Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E[X2]− E[2µX] + E[µ2]

= E[X2]− 2µE[X] + µ2

= E[X2]− µ2

(74)

Var(X) = E[X2]− (E[X])2 (75)
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Probability
Variance

Property

Var(aX + b) = E[(aX + b− E[aX + b])2]

= E[(aX + b− aµ− b)2]

= E[(aX − aµ)2]

= E[a2(X − µ)2]

= a2E[(X − µ)2]

= a2Var(X)

(76)
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Probability
Variance & Standard Deviation

Property

Specifying particular values for a and b in Var(aX + b) = a2Var(X) leads to some
interesting corollaries. For instance, by setting a = 0 we obtain that

Var(b) = 0 (77)

meaning that the variance of a constant is 0.

Similarly, by setting a = 1 we obtain

Var(X + b) = Var(X) (78)

The quantity σ =
√
Var(X) is called the standard deviation of X. The standard

deviation has the same units as does the mean.
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Probability

Probability
Pause

Random Variables Exercises
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Probability
Jointly Distributed Random Variables

Jointly Distributed Random Variables

For a given experiment, we are often interested not only in probability
distribution functions of individual random variables but also in the relationships
between two or more random variables

To specify the relationship between two random variables, we define the joint
cumulative probability distribution function of X and Y by

F (x, y) = P{X ≤ x, Y ≤ y} (79)

One can also define the distribution functions of X and Y , respectively, as

FX(x) = P{X ≤ x, Y < ∞} and FY (x) = P{X < ∞, Y ≤ y} (80)
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Probability
Jointly Distributed Random Variables

Jointly Distributed Random Variables

When X and Y are both discrete random variables whose possible values are,
respectively, x1, x2, . . . , and y1, y2, . . . , we define the joint probability mass
function of X and Y , p(xi, yj), by

p(xi, yj) = P{X = xi, Y = yj} (81)

Since Y must take on some value yj , it follows that the event {X = xi} can be
written as the union, for all j, of the mutually exclusive events {X = xi, Y = yj}.

{X = xi} =
⋃
j

{X = xi, Y = yj} (82)

Emanuel A. R. Camacho (ISEC Lisboa) Data Science in Aerospace 2024/2025 84 / 217



Probability
Jointly Distributed Random Variables

Using Axiom 3 of the probability function, we obtain

P{X = xi} = P

⋃
j

{X = xi, Y = yj}

 (83)

which results in
P{X = xi} =

∑
j

p(xi, yj) (84)

Similarly, P{Y = yj} can be obtained by

P{Y = yj} =
∑
i

p(xi, yj) (85)

Emanuel A. R. Camacho (ISEC Lisboa) Data Science in Aerospace 2024/2025 85 / 217



Probability
Jointly Distributed Random Variables

When X and Y are jointly continuous random variables, there is a function
f(x, y) defined for all real x and y having the property that for every set C of
pairs of real numbers

P{(X,Y ) ∈ C} =

∫∫
(x,y)∈C

f(x, y) dx dy (86)

The function f(x, y) is called the jointly probability density function of X and Y .
If A and B are any sets of real numbers, then by defining
C = {(x, y) : x ∈ A, y ∈ B}, we see that

P{X ∈ A, Y ∈ B} =

∫
A

∫
B
f(x, y) dx dy (87)
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Probability
Jointly Distributed Random Variables

Jointly Distributed Random Variables

Based on f(x, y), the cumulative distribution F is defined as

F (a, b) = P{X ≤ a, Y ≤ b} (88)

= P{X ∈ ]−∞, a], Y ∈ ]−∞, b]} (89)

=

∫ b

−∞

∫ a

−∞
f(x, y) dx dy (90)

Upon differentiation

f(a, b) =
∂2

∂a∂b
F (a, b) (91)
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Probability
Jointly Distributed Random Variables

Jointly Distributed Random Variables

Concerning the individual probability density functions of X, fX , and Y , fY ,

P{X ∈ A} = P{X ∈ A, Y ∈]−∞,∞[} (92)

=

∫
A

∫ ∞

−∞
f(x, y) dy dx (93)

=

∫
A
fX(x) dx (94)

Hence, the probability density functions of X and Y are given, respectively, by

fX(x) =

∫ ∞

−∞
f(x, y) dy and fY (y) =

∫ ∞

−∞
f(x, y) dx (95)
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Probability
Independent Random Variables

Independent Random Variables

The random variables X and Y are said to be independent if for any two sets of
real numbers A and B,

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B} (96)

In other words, X and Y are independent if, for all A and B, the events
EA = {X ∈ A} and FB = {Y ∈ B} are independent. Using the three axioms of
probability, it can be shown that

P{X ≤ A, Y ≤ B} = P{X ≤ A}P{Y ≤ B} (97)

F (a, b) = FX(a)FY (b) (98)
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Probability
Independent Random Variables

Independent Random Variables

When X and Y are discrete random variables, the condition of independence is
equivalent to

p(x, y) = pX(x)pY (y) (99)

where pX and pY are the probability mass functions of X and Y .

In the jointly continuous case, the condition of independence is equivalent to

f(x, y) = fX(x)fY (y) (100)

where fX and fY are the probability density functions of X and Y .
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Probability
Independent Random Variables

We can also define joint probability distributions for n random variables

F (a1, a2, . . . , an) = P{X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an} (101)

If these random variables are discrete, we define their joint probability mass
function p(x1, x2, . . . , xn) by

p(x1, x2, . . . , xn) = P{X1 = x1, X2 = x2, . . . , Xn = xn} (102)

Further, the n random variables are said to be jointly continuous if there exists a
function f(x1, x2, . . . , xn)

P{(X1, . . . , Xn) ∈ C} =

∫ ∫
(x1,...,xn)∈C

. . .

∫
f(x1, . . . , xn) dx1 · · · dxn (103)
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Probability
Independent Random Variables

The concept of independence may, of course, also be defined for more than two
random variables. In general, the n random variables X1, X2, . . . , Xn are said to
be independent if, for all sets of real numbers A1, A2, . . . , An,

P{X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An} =

n∏
i=1

P{Xi ∈ Ai} (104)

As before, it can be shown that this condition is equivalent to

P{X1 ≤ a1, X2 ≤ a2, . . . , Xn ≤ an} =

n∏
i=1

P{Xi ≤ ai} (105)

for all a1, a2, . . . , an.
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Probability
Conditional Distribution

Recalling the conditional probability of E given F , provided that P (F ) > 0, is
defined by

P (E|F ) =
P (E ∩ F )

P (F )
(106)

Hence, if X and Y are discrete random variables, it is natural to define the
conditional probability mass function of X given that Y = y, by

pX|Y (x|y) = P{X = x|Y = y} (107)

=
P{X = x, Y = y}

P{Y = y}
=

p(x, y)

pY (y)
(108)

for all values of y such that pY (y) > 0.
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Probability
Conditional Distribution

If X and Y have a joint probability density function f(x, y), then the conditional
probability density function of X, given that Y = y, is defined for all values of y
such that fY (y) > 0, by

fX|Y (x|y) =
f(x, y)

fY (y)
(109)

The use of conditional densities allows us to define conditional probabilities of
events associated with one random variable when we are given the value of a
second random variable. That is, if X and Y are jointly continuous, then, for any
set A,

P{X ∈ A|Y = y} =

∫
A
fX|Y (x|y) dx (110)
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Probability
Expected Values of Sums of Random Variables

The two-dimensional version states that if X and Y are random variables and g
is a function of two variables, then

Discrete case: E[g(X,Y )] =
∑
y

∑
x

g(x, y)p(x, y) (111)

Continuous case: E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy (112)

In the continuous case, if g(X,Y ) = X + Y then

E[X + Y ] =

∫ ∞

−∞

∫ ∞

−∞
(x+ y)f(x, y) dx dy (113)
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Probability
Expected Values of Sums of Random Variables

If g(X,Y ) = X + Y then

E[X + Y ] =

∫ ∞

−∞

∫ ∞

−∞
(x+ y)f(x, y) dx dy (114)

=

∫ ∞

−∞

∫ ∞

−∞
xf(x, y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
yf(x, y) dx dy (115)

= E[X] + E[Y ] (116)

In general, for any n,

E[X1 +X2 + · · ·+Xn] = E[X1] + E[X2] + · · ·+ E[Xn] (117)
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Probability
Covariance & Variance of Sums of Random Variables

Variance of Sums of Random Variables

As we saw before, the expectation of a sum of random variables is equal to the
sum of their expectations. The corresponding result for variances is, however, not
generally valid. Consider

Var(X +X) = Var(2X)

= 22Var(X)

= 4Var(X)

̸= Var(X) + Var(X)

(118)
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Probability
Covariance & Variance of Sums of Random Variables

There is, however, an important case in which the variance of a sum of random
variables is equal to the sum of the variances occuring when the random variables
are independent.

Covariance

Before proving this, however, let us define the concept of the covariance of two
random variables.

The covariance of two random variables X and Y , written Cov(X,Y ), is defined
by

Cov(X,Y ) = E[(X − µX)(Y − µY )] (119)

where µX and µY are the means of X and Y , respectively.
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Probability
Covariance & Variance of Sums of Random Variables

Covariance & Correlation

Cov(X,Y ) > 0 indicates that Y tends to increase as X increases

Cov(X,Y ) < 0 indicates that Y tends to decrease as X increases

The strength of the relationship between X and Y is indicated by the correlation
between X and Y , a dimensionless quantity obtained by dividing the covariance
by the product of the standard deviations of X and Y . That is,

Corr(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

. (120)
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Probability
Covariance & Variance of Sums of Random Variables

Covariance Properties

Cov(X,Y ) = E[XY − µxY − µyX + µxµy] (121)

= E[XY ]− µxE[Y ]− µyE[X] + µxµy (122)

= E[XY ]− µxµy − µyµx + µxµy (123)

= E[XY ]− E[X]E[Y ] (124)

Cov(X,X) = Var(X) (125)

Cov(X,Y ) = Cov(Y,X) (126)

Cov(aX, Y ) = aCov(X,Y ) (127)
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Probability
Covariance & Variance of Sums of Random Variables

Covariance Properties

Cov

(
n∑

i=1

Xi, Y

)
=

n∑
i=1

Cov(Xi, Y ) (128)

Cov

 n∑
i=1

Xi,

m∑
j=1

Yj

 =

n∑
i=1

m∑
j=1

Cov(Xi, Yj) (129)

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) +

n∑
i=1

n∑
j=1
j ̸=i

Cov(Xi, Xj) (130)
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Probability
Covariance & Variance of Sums of Random Variables

Covariance Properties

If X and Y are independent random variables, then

Cov(X,Y ) = 0 (131)

and so for independent X1, . . . , Xn,

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi). (132)

!!! Zero covariance does not imply independence !!!
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Probability
Special Random Variables

Discrete Distributions

Binomial Distribution
Negative Binomial Distribution
Geometric Distribution
Hypergeometric Distribution
Poisson Distribution

Continuous Distributions

Uniform Distribution
Normal Distribution
Exponential Distribution
Chi-Square Distribution
t-Distribution
F -Distribution
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Probability
Discrete Distributions

Bernoulli Random Variable

Suppose that a trial, or an experiment, whose outcome can be classified as either
a “success” or as a “failure” is performed. If we let X = 1 when the outcome is a
success and X = 0 when it is a failure, then the probability mass function of X is
given by

P{X = 0} = 1− p (133)

and
P{X = 1} = p (134)

where p, 0 ≤ p ≤ 1, is the probability that the trial is a “success.”
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Probability
Discrete Distributions

Bernoulli Random Variable

A random variable X is said to be a Bernoulli random variable if its probability
mass function is given by previous equations for some p ∈ [0, 1]. Its expected
value is

E[X] =
∑
i

xiP{X = xi} (135)

E[X] = 1 · P{X = 1}+ 0 · P{X = 0} = p (136)

That is, the expectation of a Bernoulli random variable is the probability that
the random variable equals 1.
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Probability
Discrete Distributions

Binomial Random Variable

Suppose now that n independent trials, each of which results in a “success” with
probability p and in a “failure” with probability 1− p, are to be performed. If X
represents the number of successes that occur in the n trials, then X is said to be
a binomial random variable with parameters (n, p).

The probability mass function of a binomial random variable with parameters n
and p is given by

P{X = i} =

(
n

i

)
pi(1− p)n−i, i = 0, 1, . . . , n (137)
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Probability
Discrete Distributions

Binomial Distribution Function (X ∼ B(n, p))

P{X = i} =

(
n

i

)
pi(1− p)n−i, i = 0, 1, . . . , n (138)

Expected Value
E[X] = np (139)

Variance
Var(X) = npq = np(1− p) (140)
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Probability
Discrete Distributions

Binomial Distribution Function (X ∼ B(n, p))

The probability mass function of a binomial random variable with parameters n
and p is given by

P{X = i} =

(
n

i

)
pi(1− p)n−i, i = 0, 1, . . . , n (141)

The cumulative probability function for a binomial random variable is given by

P{X ≤ i} =

i∑
k=0

(
n

k

)
pk(1− p)n−k, i = 0, 1, . . . , n. (142)
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Probability
Discrete Distributions

Binomial Distribution (X ∼ B(n, p))

X ∼ B(10, 0.5)
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Probability

Negative Binomial Distribution (X ∼ NB(r, p))

If X represents the number of trials required to achieve r successed in a series of
independent Bernoulli trials, each with a constant probability of success, p, then
X is said to be a negative binomial random variable with parameters (r, p).

P{X = i} =

(
i+ r − 1

i

)
pr(1− p)i (143)

Expected Value

E[X] =
r(1− p)

p
(144)

Variance

Var(X) =
r(1− p)

p2
(145)
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Probability
Discrete Distributions

Negative Binomial Distribution (X ∼ NB(r, p))

X ∼ NB(3, 0.5)
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Probability

Geometric Distribution (X ∼ G(p))

A geometric random variable represents the number of trials in a sequence of
draws to get one success. It is governed by the geometric distribution, a discrete
probability distribution that models the probability that the first occurence of
success required i independent trials, each with success probability, p.

P{X = i} = (1− p)i−1p, i = 0, 1, . . . (146)

Expected Value

E[X] =
1

p
(147)

Variance

Var(X) =
1− p

p2
(148)
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Probability
Discrete Distributions

Geometric Distribution (X ∼ G(p))

X ∼ G(0.3)
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Probability

Hypergeometric Distribution (X ∼ H(N,M, n))

A hypergeometric random variable represents the number of successes in a
sequence of draws from a finite population without replacement. It is governed
by the hypergeometric distribution, a discrete probability distribution that
models scenarios where the probability of success changes with each draw due to
the lack of replacement.

Population Size (N +M): The total number of items in the population.

Number of Successes in Population (N): The count of items classified as
“successes.”

Sample Size (n): The number of items drawn from the population.

Number of Observed Successes (i): The count of successes in the sample.
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Probability

Hypergeometric Distribution (X ∼ H(N,M, n))

P{X = i} =

(
N

i

)(
M

n− i

)
(
N +M

n

) , i = 0, 1, . . . ,min(N,n) (149)

Expected Value

E[X] =
nN

N +M
= np (150)

Variance

Var(X) = np(1− p)

[
1− n− 1

N +M − 1

]
(151)
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Probability
Discrete Distributions

Hypergeometric Distribution (X ∼ H(N,M, n))

X ∼ H(7, 13, 5)
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Probability
Discrete Distributions

Poisson Distribution (X ∼ Poisson(λ))

The Poisson distribution is a discrete probability distribution that models the
likelihood of a given number of events occurring within a fixed interval of time,
space, or other dimensions, provided that these events happen independently and
at a constant average rate.

A random variable X, taking on one of the values 0, 1, 2, . . ., is said to be a
Poisson random variable with parameter λ, λ > 0, if its probability mass function
is given by

P{X = i} = e−λλ
i

i!
, i = 0, 1, . . . (152)

with e ≈ 2.7183.
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Probability
Discrete Distributions

Poisson Distribution (X ∼ Poisson(λ))

P{X = i} = e−λλ
i

i!
, i = 0, 1, . . . (153)

P{X ≤ i} =
i∑

k=0

e−λλ
k

k!
(154)

Expected Value
E[X] = λ (155)

Variance
Var(X) = E[X] = λ (156)
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Probability
Discrete Distributions

Poisson Distribution (X ∼ Poisson(λ))

X ∼ Poisson(4)
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Probability
Special Random Variables

Discrete Distributions

Binomial Distribution
Negative Binomial Distribution
Geometric Distribution
Hypergeometric Distribution
Poisson Distribution

Continuous Distributions

Uniform Distribution
Normal Distribution
Exponential Distribution
Chi-Square Distribution
t-Distribution
F -Distribution
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Probability
Continuous Distributions

Uniform Distribution (X ∼ U(α, β))

A random variable is said to follow a uniform distribution with parameters α and
β if its density is

f(x) =


1

β − α
if x ∈ [α, β]

0 otherwise
(157)

Expected Value

E[X] =
α+ β

2
(158)

Variance

Var(X) =
(β − α)2

12
(159)
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Probability
Continuous Distributions

Uniform Distribution (X ∼ U(α, β))

X ∼ U(0, 10)
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Probability
Continuous Distributions

Normal Distribution (X ∼ N (µ, σ2))

A random variable is said to follow a normal distribution with parameters µ and
σ2 if its density is

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2 (160)

Expected Value
E[X] = µ (161)

Variance
Var(X) = σ2 (162)
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Probability
Continuous Distributions

Standard Normal Distribution

If X ∼ N (µ, σ2), then

Z =
X − µ

σ
(163)

is a normal random variable with mean 0 and variance 1. Such a random variable
Z is said to have a standard, or unit, normal distribution.

Its distribution function is given by

f(x) =
1√
2π

e−x2/2 (164)
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Probability
Continuous Distributions

Normal Distribution (X ∼ N (µ, σ2))

X ∼ N (0, 1)
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Probability
Continuous Distributions

Exponential Distribution (X ∼ Exp(λ))

A random variable is said to follow an exponential distribution with parameter λ
if its density is

f(x) =

{
λe−λx if x ≥ 0

0 if x < 0
(165)

Expected Value

E[X] =
1

λ
(166)

Variance

Var(X) =
1

λ2
(167)
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Probability
Continuous Distributions

Exponential Distribution (X ∼ Exp(λ))

X ∼ Exp(0.5)
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Probability
Continuous Distributions - Distributions arising from the normal

Chi-Square Distribution (X ∼ χ2
n)

If Z1, Z2, . . . , Zn are independent standard normal random variables, then X,
defined by

X = Z2
1 + Z2

2 + · · ·+ Z2
n (168)

is said to have a chi-square distribution with n degrees of freedom.

X ∼ χ2
n (169)
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Probability
Continuous Distributions - Distributions arising from the normal

Chi-Square Distribution (X ∼ χ2
n)

If X is a chi-square random variable with n degrees of freedom, then for any
α ∈ [0, 1], the quantity χ2

α,n is defined to be such that

P (X ≥ χ2
α,n) = α (170)

Expected Value
E[X] = n (171)

Variance
Var(X) = 2n (172)
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Probability
Continuous Distributions - Distributions arising from the normal

t-Distribution (Tn ∼ tn)

If Z and χ2
n are independent random variables, with Z having a standard normal

distribution and χ2
n having a chi-square distribution with n degrees of freedom,

then the random variable Tn defined by

Tn =
Z√
χ2
n/n

(173)

is said to have a t-distribution with n degrees of freedom with

χ2
n

n
=

Z2
1 + Z2

2 + · · ·+ Z2
n

n
(174)
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Probability
Continuous Distributions - Distributions arising from the normal

t-Distribution (Tn ∼ tn)

For α, 0 < α < 1, let tα,n be such that

P (Tn ≥ tα,n) = α (175)

Expected Value
E[Tn] = 0 (176)

Variance
Var(Tn) =

n

n− 2
(177)
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Probability
Continuous Distributions - Distributions arising from the normal

F -Distribution (Fn,m ∼ F (n,m))

If χ2
n and χ2

m are independent chi-square random variables with n and m degrees
of freedom, respectively, then the random variable Fn,m defined by

Fn,m =
χ2
n/n

χ2
m/m

(178)

is said to have an F -distribution with n and m degrees of freedom.
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Probability
Continuous Distributions - Distributions arising from the normal

F -Distribution (X ∼ Fn,m)

For any α ∈ [0, 1], let Fα,n,m be such that

P (X ≥ Fα,n,m) = α (179)

Expected Value

E[X] =
m

m− 2
(180)

Variance

Var(X) =
2m(n+m− 2)

n(m− 2)2(m− 4)
(181)
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Probability
Distributions of Sampling Statistics

If X1, · · · , Xn are independent random variables having a common distribution F , then
we say that they constitute a sample (sometimes called a random sample) from the
distribution F .

The Sample Mean

X =
X1 + · · ·+Xn

n
(182)

Expected Value

E[X] = E

[
X1 + · · ·+Xn

n

]
=

1

n
(E[X1] + · · ·+ E[Xn]) = µ

(183)
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Probability
The Central Limit Theorem

The Central Limit Theorem is a fundamental concept in probability and statistics. It
states that, under certain conditions, the sampling distribution of the sample mean will
approximate a normal distribution (bell-shaped curve) as the sample size becomes
sufficiently large, regardless of the original population’s distribution.

Central Limit Theorem

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed
random variables each having mean µ and variance σ2. Then for n large, the
distribution of

X1 +X2 + · · ·+Xn (184)

is approximately normal with mean nµ and variance nσ2.
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Probability
The Central Limit Theorem

The Central Limit Theorem

It follows from the central limit theorem that

X1 + · · ·+Xn − nµ

σ
√
n

(185)

is approximately a standard normal random variable. Hence, for n large,

P

{
X1 + · · ·+Xn − nµ

σ
√
n

< x

}
≈ P (Z < x), (186)

where Z is a standard normal random variable.
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Probability
Distributions of Sampling Statistics

Approximate Distribution of the Sample Mean

Let X1, . . . , Xn be a sample from a population having mean µ and variance σ2.
The central limit theorem can be used to approximate the distribution of the
sample mean

X =
X1 + · · ·+Xn

n
=

n∑
i=1

Xi/n (187)

From the central limit theorem, X will be approximately normal for a large
enough n. Since the sample mean has expected value µ and standard deviation
σ/

√
n, it then follows that

X − µ

σ/
√
n

∼ N (0, 1) (188)
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Probability
Distributions of Sampling Statistics

Is n large enough?

If the underlying population distribution is normal, then the sample mean X
will also be normal regardless of the sample size.

A general rule of thumb is that one can be confident of the normal
approximation whenever the sample size n is at least 30.

That is, practically speaking, no matter how nonnormal the underlying
population distribution is, the sample mean of a sample of size at least 30
will be approximately normal.
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Probability
Distributions of Sampling Statistics

The Sample Variance

Let X1, . . . , Xn be a sample from a population having mean µ and variance σ2.
Let X be the sample mean, the statistic S2, defined by

S2 =

n∑
i=1

(Xi −X)2

n− 1
(189)

is called the sample variance. S =
√
S2 is called the sample standard deviation.

Expected value of S2

E[S2] = σ2 (190)
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Probability
Distributions of Sampling Statistics from a Normal Distribution

Sample Mean Distribution

Since the sum of independent normal random variables is normally distributed, it
follows that X is normal with mean

E[X] = µ (191)

and variance
Var(X) = σ2/n (192)

That is, X, the average of the sample, is normal with a mean equal to the
population mean but with a variance reduced by a factor of 1/n. It follows that

X − µ

σ/
√
n

∼ N (0, 1) (193)
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Probability
Distributions of Sampling Statistics from a Normal Distribution

Joint Distribution of X and S2

If X1, . . . , Xn is a sample from a normal population having mean µ and variance
σ2, then X and S2 are independent random variables, with

X ∼ N (µ, σ2/n) (194)

and
(n− 1)S2

σ2
∼ χ2

n−1 (195)

If X denotes the sample mean and S the sample standard deviation, then

√
n
X − µ

S
∼ tn−1 (196)
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Inferential Statistics
Parameter Estimation - Point Estimates

In statistics, an estimator is a rule or formula used to estimate a population parameter
based on sample data. A “good” estimator possesses certain desirable properties that
ensure its reliability and accuracy in estimating the true parameter.

The basic properties of estimators are related to notions of accuracy and precision, similar
to the characterization of experimental methods for measuring an unknown quantity in
terms of the agreement of repeated measurements obtained, where:

Accuracy - agreement of observations with the target value.

Precision - agreement of observations with each other.

Accuracy is associated with systematic errors, for instance, deficiencies in measurement
instruments, while precision refers to random errors that are responsible for small,
unpredictable variations in the measurements made, whose causes are not fully
understood.
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Inferential Statistics
Parameter Estimation - Point Estimates

Any statistic used to estimate the value of an unknown parameter θ is called an estimator
of θ. The observed value of the estimator is called the estimate. For instance, as we shall
see, the usual estimator of the mean of a normal population, based on a sample
X1, . . . , Xn from that population, is the sample mean X.

Maximum Likelihood Estimator

The likelihood function is defined as:

L(θ|x) = f(x|θ), (197)

where f(x|θ) is the probability density (or mass) function of the data x,
parameterized by θ.
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Inferential Statistics
Parameter Estimation - Point Estimates

Maximum Likelihood Estimator

For independent and identically distributed samples, the likelihood function
becomes

L(θ|x) =
n∏

i=1

f(xi|θ). (198)

The maximum likelihood estimate (MLE) is obtained by maximizing the
likelihood function

θ̂ = argmax
θ

L(θ|x), (199)

or equivalently, by maximizing the log-likelihood

ℓ(θ|x) = logL(θ|x), (200)
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Inferential Statistics
Parameter Estimation - Evaluating an Estimator

Evaluating an Estimator

Let Θ̂ = Θ̂(X1, . . . , Xn) be an estimator of the parameter θ. One way to
determine the “worth” of the estimator Θ̂ is the Mean Squared Error (MSE),
given by:

MSE(Θ̂) ≡ E((Θ̂− θ)2) = (E(Θ̂)− θ︸ ︷︷ ︸
Bias of θ

)2 +Var(Θ̂) (201)

Let Θ̂1 = Θ̂1(X1, . . . , Xn) and Θ̂2 = Θ̂2(X1, . . . , Xn) be two estimators of the
parameter θ. It is said that Θ̂1 is better than Θ̂2 when

MSE(Θ̂1) < MSE(Θ̂2) (202)
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Inferential Statistics
Parameter Estimation - Interval Estimates

Suppose that X1, . . . , Xn is a sample from a normal population having unknown
mean µ and known variance σ2. It has been shown that X is the maximum
likelihood estimator for µ. However, we do not expect that the sample mean X
will exactly equal µ, but rather that it will “be close.”

Point Estimates → Interval Estimates

In the foregoing, since the point estimator X is normal with mean µ and variance
σ2/n, it follows that

X − µ

σ/
√
n

=
√
n
(X − µ)

σ
(203)

has a standard normal distribution.
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Inferential Statistics
Parameter Estimation - Interval Estimates

Considering
√
n
(X − µ)

σ
∼ N (0, 1) (204)

then,

P

{
−zα/2 <

√
n
(X − µ)

σ
< zα/2

}
= 1− α (205)

P

{
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

}
= 1− α (206)

This means that (1− α) percent of the time the value of the sample average X
will be such that the distance between it and the mean µ will be less than
zα/2σ/

√
n.
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Inferential Statistics
Parameter Estimation - Interval Estimates

Based on

P

{
X − zα/2

σ√
n
< µ < X + zα/2

σ√
n

}
= 1− α, (207)

the interval [
x− zα/2

σ√
n
, x+ zα/2

σ√
n

]
(208)

is called a 100(1− α) percent confidence interval estimate of µ where x is the
observed sample mean.

This is a two-sided confidence interval but there can be one-sided upper or lower
confidence intervals for µ.
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Inferential Statistics
Parameter Estimation - Interval Estimates

Suppose now that X1, . . . , Xn is a sample from a normal distribution with
unknown mean µ and unknown variance σ2. Since σ is unknown, we can no
longer base our interval on the fact that

√
n(X − µ)/σ is a standard normal

random variable. However, by using the sample variance, S2, then it follows that

√
n
(X − µ)

S
(209)

is a t-random variable with n degrees of freedom. From the symmetry of the
t-density function we have that for any α ∈ [0, 1/2],

P

{
−tα/2,n−1 <

√
n
(X − µ)

S
< tα/2,n−1

}
= 1− α (210)
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Inferential Statistics
Parameter Estimation - Interval Estimates

Based on

P

{
X − tα/2,n−1

S√
n
< µ < X + tα/2,n−1

S√
n

}
= 1− α, (211)

the interval [
x− tα/2,n−1

s√
n
, x+ tα/2,n−1

s√
n

]
(212)

is called a 100(1− α) percent confidence interval estimate of µ where x is the
observed sample mean.

This is a two-sided confidence interval but there can be one-sided upper or lower
confidence intervals for µ.
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Inferential Statistics
Parameter Estimation - Interval Estimates

If X1, . . . , Xn is a sample from a normal distribution having unknown parameters
µ and σ2, then we can construct a confidence interval for σ2 by using the fact that

(n− 1)
S2

σ2
∼ χ2

n−1 (213)

Hence,

P

{
χ2
1−α/2,n−1 ≤ (n− 1)

S2

σ2
≤ χ2

α/2,n−1

}
= 1− α (214)

which can be further simplified to

P

{
(n− 1)S2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α/2,n−1

}
= 1− α (215)
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Inferential Statistics
Parameter Estimation - Interval Estimates

Based on

P

{
(n− 1)S2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α/2,n−1

}
= 1− α (216)

the interval [
(n− 1)s2

χ2
α/2,n−1

,
(n− 1)s2

χ2
1−α/2,n−1

]
(217)

is called a 100(1− α) percent confidence interval estimate of σ2 where S2 is the
sample variance.

This is a two-sided confidence interval but there can be one-sided upper or lower
confidence intervals for σ2.
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Inferential Statistics
Parameter Estimation - Interval Estimates

When sampling from normal populations

Confidence interval for µ having unknown mean µ and known variance σ2

Confidence Interval Lower Interval Upper Interval

X ± zα/2
σ√
n

[
−∞, X + zα

σ√
n

] [
X + zα

σ√
n
,∞
]

Confidence interval for µ having unknown mean µ and unknown variance σ2

Confidence Interval Lower Interval Upper Interval

X ± tα/2,n−1
S√
n

[
−∞, X + tα,n−1

S√
n

] [
X − tα,n−1

S√
n
,∞
]

Confidence interval for σ2 having unknown mean µ and known variance σ2

Confidence Interval Lower Interval Upper Interval[
(n−1)S2

χ2
α/2,n−1

, (n−1)S2

χ2
1−α/2,n−1

] [
0, (n−1)S2

χ2
1−α,n−1

] [
(n−1)S2

χ2
α,n−1

,∞
]
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Inferential Statistics
Parameter Estimation - Interval Estimates

Let X1, X2, . . . , Xn be a sample of size n from a normal population having mean
µ1 and variance σ2

1 and let Y1, . . . , Ym be a sample of size m from a different
normal population having mean µ2 and variance σ2

2 and suppose that the two
samples are independent of each other.

X ∼ N (µ1, σ
2
1/n) (218)

Y ∼ N (µ2, σ
2
2/m) (219)

We are interested in estimating µ1 − µ2. Since X and Y are the maximum
likelihood estimators of µ1 and µ2, it can be proved that X − Y is the maximum
likelihood estimator of µ1 − µ2.
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Inferential Statistics
Parameter Estimation - Interval Estimates

To obtain a confidence interval estimator, we need the distribution of X − Y .
Considering that

X ∼ N (µ1, σ
2
1/n) (220)

Y ∼ N (µ2, σ
2
2/m) (221)

it follows from the fact that the sum of independent normal random variables is
also normal, that

X − Y ∼ N
(
µ1 − µ2,

σ2
1

n
+

σ2
2

m

)
(222)
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Inferential Statistics
Parameter Estimation - Interval Estimates

Hence, assuming σ2
1 and σ2

2 are known, we have that

X − Y − (µ1 − µ2)√
σ2
1

n
+

σ2
2

m

∼ N (0, 1) (223)

Based on this, the confidence interval estimate can be extracted from

P

−zα/2 <
X − Y − (µ1 − µ2)√

σ2
1

n
+

σ2
2

m

< zα/2

 = 1− α (224)
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Inferential Statistics
Parameter Estimation - Interval Estimates

When assuming that σ2
1 and σ2

2 are unknown but equal, we have that

X − Y − (µ1 − µ2)√(
1

n
+

1

m

)
(n− 1)S2

1 + (m− 1)S2
2

n+m− 2

∼ tn+m−2 (225)

Based on this, the confidence interval estimate can be extracted from

P

−tα/2,n+m−2 <
X − Y − (µ1 − µ2)√(
1
n + 1

m

) (n−1)S2
1+(m−1)S2

2
n+m−2

< tα/2,n+m−2

 = 1− α (226)
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Inferential Statistics
Interval Estimates

100(1− α) Two-Sided Confidence Interval Estimate for µ1 − µ2

Assumption: σ1, σ2 known

X̄ − Ȳ ± zα/2

√
σ2
1

n
+

σ2
2

m
(227)

Assumption: σ1, σ2 unknown but equal

X̄ − Ȳ ± tα/2,n+m−2

√(
1

n
+

1

m

)
(n− 1)S2

1 + (m− 1)S2
2

n+m− 2
(228)
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Inferential Statistics
Interval Estimates

100(1− α) Lower Confidence Interval Estimate for µ1 − µ2

Assumption: σ1, σ2 known]
−∞, X̄ − Ȳ + zα

√
σ2
1

n
+

σ2
2

m

]
(229)

Assumption: σ1, σ2 unknown but equal]
−∞, X̄ − Ȳ + tα,n+m−2

√(
1

n
+

1

m

)
(n− 1)S2

1 + (m− 1)S2
2

n+m− 2

]
(230)

Upper confidence intervals for µ1 − µ2 are obtained from lower confidence intervals for µ2 − µ1
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Inferential Statistics
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Interval Estimation Exercises
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Inferential Statistics
Hypothesis Testing

Consider a population having distribution Fθ, where θ is unknown, and suppose
we want to test a specific hypothesis about θ.We shall denote this hypothesis by
H0 and call it the null hypothesis. Suppose now that in order to test a specific
null hypothesis H0, a population sample of size n is to be observed. Based on
these n values, we must decide whether or not to accept H0. A test for H0 can
be specified by defining a region C in n-dimensional space with the requirements

accept H0 if (X1, X2, . . . , Xn) /∈ C (231)

and
reject H0 if (X1, X2, . . . , Xn) ∈ C (232)

with region C being called the critical region.
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Inferential Statistics
Hypothesis Testing

Tests Concerning the Mean of a Normal Population

Suppose that X1, . . . , Xn is a sample of size n from a normal distribution having
an unknown mean µ and a known variance σ2 and suppose we are interested in
testing the null hypothesis

H0 : µ = µ0 (233)

against the alternative hypothesis

Ha : µ ̸= µ0 (234)

where µ0 is some specified constant.
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Inferential Statistics
Hypothesis Testing

Since X is a natural point estimator of µ, it seems reasonable to accept H0 if X
is not too far from µ0. That is, the critical region of the test would be of the form

C = {X1, . . . , Xn : |X̄ − µ0| > c} (235)

for some suitably chosen value c. If we desire that the test has significance level
α, then c must be such that

Pµ0{|X̄ − µ0| > c} = α (236)

where we write Pµ0 to mean that the preceding probability is to be computed
under the assumption that µ = µ0. However, when µ = µ0, X will be normally
distributed with mean µ0 and variance σ2/n.
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Inferential Statistics
Hypothesis Testing

Hypothesis Testing Steps
1 Establish hypotheses

Null Hypothesis (H0): The default assumption, often stating no effect or no
difference.
Alternative Hypothesis (Ha): The claim being tested, which contradicts the
null hypothesis.

2 Choose a significance level

3 Calculate a test statistic

4 Compare the test statistic to a critical value
5 Make a decision

Reject H0 if the evidence supports Ha (type I error can occur).
Fail to reject H0 if the evidence is insufficient (type II error can occur).
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Mean of a Normal Population

X1, . . . , Xn is a sample from a N (µ, σ2) population with known σ2

Test Statistic TS

TS =
√
n
X − µ0

σ
(237)

H0 Ha Significance Level α p-Value if TS = t

µ = µ0 µ ̸= µ0 Reject if |TS| > zα/2 2P{Z ≥ |t|}

µ ≤ µ0 µ > µ0 Reject if TS > zα P{Z ≥ t}

µ ≥ µ0 µ < µ0 Reject if TS < −zα P{Z ≤ t}

Z is a standard normal random variable
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Mean of a Normal Population

X1, . . . , Xn is a sample from a N (µ, σ2) population with unknown σ2

Test Statistic TS

TS =
√
n
X − µ0

S
(238)

H0 Ha Significance Level α p-Value if TS = t

µ = µ0 µ ̸= µ0 Reject if |TS| > tα/2,n−1 2P{Tn−1 ≥ |t|}

µ ≤ µ0 µ > µ0 Reject if TS > tα,n−1 P{Tn−1 ≥ t}

µ ≥ µ0 µ < µ0 Reject if TS < −tα,n−1 P{Tn−1 ≤ t}

Tn−1 is a t-random variable with n− 1 degrees of freedom
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Equality of Means of Two Normal Distributions

Tests Concerning the Equality of Means of Two Normal Populations

Suppose that X1, . . . , Xn and Y1, . . . , Ym are independent samples from normal
populations having unknown means µx and µy but known variances σ2

x and σ2
y .

Let us consider the problem of testing the hypothesis

H0 : µx = µy (239)

against the alternative hypothesis

Ha : µx ̸= µy (240)
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Equality of Means of Two Normal Distributions

X1, . . . , Xn is a sample from a N (µ, σ2
1) population

Y1, . . . , Ym is a sample from a N (µ, σ2
2) population

H0 : µx = µy versus Ha : µx ̸= µy

Assuming known σ1, σ2, the test Statistic TS is

TS =
X − Y√
σ2
1

n
+

σ2
2

m

(241)

Significance Level α p-Value if TS = t

Reject if |TS| > zα/2 2P{Z ≥ |t|}
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Equality of Means of Two Normal Distributions

X1, . . . , Xn is a sample from a N (µ, σ2
1) population

Y1, . . . , Ym is a sample from a N (µ, σ2
2) population

H0 : µx = µy versus Ha : µx ̸= µy

Assuming σ1 = σ2, the test Statistic TS is

TS =
X − Y√

(n− 1)S2
1 + (m− 1)S2

2

n+m− 2

√
1

n
+

1

m

(242)

Significance Level α p-Value if TS = t

Reject if |TS| > tα/2,n+m−2 2P{Tn+m−2 ≥ |t|}
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Equality of Means of Two Normal Distributions

X1, . . . , Xn is a sample from a N (µ, σ2
1) population

Y1, . . . , Ym is a sample from a N (µ, σ2
2) population

H0 : µx = µy versus Ha : µx ̸= µy

Assuming n,m large, the test Statistic TS is

TS =
X − Y√
S2
1

n
+

√
S2
2

m

(243)

Significance Level α p-Value if TS = t

Reject if |TS| > zα/2 2P{Z ≥ |t|}
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Equality of Means of Two Normal Distributions

X1, . . . , Xn is a sample from a N (µ, σ2
1) population

Y1, . . . , Ym is a sample from a N (µ, σ2
2) population

H0 : µx = µy versus Ha : µx ̸= µy

When n,m are small, the test Statistic TS is

TS =
X − Y√

S2
1/n+

√
S2
2/m

(244)

Significance Level α p-Value if TS = t

Reject if |TS| > tα/2,df 2P{Tdf ≥ |t|}
df =

(
S2
1/n+ S2

2/m
)2(

S2
1/n

)2
n− 1

+

(
S2
2/m

)2
m− 1
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Inferential Statistics
Hypothesis Testing - The Paired t-Test

The Paired t-Test

Considering now that data can be described by the n pairs (Xi, Yi), i = 1, . . . , n
and that Wi = Xi − Yi, i = 1, . . . , n.

Then one could test the hypothesis of no effect by testing

H0 : µw = 0 versus Ha : µw ̸= 0

where W1, . . . ,Wn are assumed to be a sample from a normal population having
unknown mean µw and unknown variance σ2

w.
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Inferential Statistics
Hypothesis Testing - The Paired t-Test

W1, . . . ,Wn is a sample from a N (µw, σ
2
w) population with unknown σ2

w

H0 : µw = 0 versus Ha : µw ̸= 0

Test Statistic TS

TS =
√
n
W

Sw
(245)

H0 Ha Significance Level α p-Value if TS = t

µw = 0 µw ̸= 0 Reject if |TS| > tα/2,n−1 2P{Tn−1 ≥ |t|}
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Variance of a Normal Population

Tests Concerning the Variance of a Normal Population

Let X1, . . . , Xn denote a sample from a normal population having unknown mean
µ and unknown variance σ2, and suppose we desire to test the hypothesis

H0 : σ
2 = σ2

0

versus
Ha : σ2 ̸= σ2

0

for a given σ2
0.
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Variance of a Normal Population

X1, . . . , Xn is a sample from a N (µ, σ2) population with unknown µ and σ2

H0 : σ
2 = σ2

0 versus Ha : σ2 ̸= σ2
0

Test Statistic TS

TS =
(n− 1)S2

σ2
0

∼ χ2
n−1 (246)

Accept H0 if

χ2
1−α/2,n−1 ≤

(n− 1)S2

σ2
0

≤ χ2
α/2,n−1

with the test data having a p− value of

p = 2min(P{χ2
n−1 < TS}, 1− P{χ2

n−1 < TS}) (247)
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Variance of a Normal Population

Tests Concerning the Equality of Variances of Two Normal Populations

Let X1, . . . , Xn and Y1, . . . , Ym denote independent samples from two normal
populations having respective (unknown) parameters µx, σ

2
x and µy, σ

2
y and

consider a test of
H0 : σ

2
x = σ2

y

versus
Ha : σ2

x ̸= σ2
y
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Inferential Statistics
Hypothesis Testing - Tests Concerning the Variance of a Normal Population

X1, . . . , Xn is a sample from a N (µx, σ
2
x) population with unknown µx and σ2

x

Y1, . . . , Ym is a sample from a N (µy, σ
2
y) population with unknown µy and σ2

y

H0 : σ
2
x = σ2

y versus Ha : σ2
x ̸= σ2

y

Test Statistic TS
TS = S2

x/S
2
y ∼ Fn−1,m−1 (248)

Accept H0 if
F1−α/2,n−1,m−1 ≤ S2

x/S
2
y ≤ Fα/2,n−1,m−1

with the test data having a p− value of

p = 2min(P{Fn−1,m−1 < TS}, 1− P{Fn−1,m−1 < TS}) (249)
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Inferential Statistics
Hypothesis Testing - Tests in Bernoulli Populations

Suppose that we have n independent samples, each with the probability p of being a
“success”. Then, the random variable X, representing the number of “successes” in a
sample of n items, will follow a binomial distribution with parameters (n, p).

H0 : p = p0 versus Ha : p ̸= p0

Assuming n large, X will follow approximately N (np, np(1− p))

Test Statistic TS

TS =
X − np0√
np0(1− p0)

=
p− p0√
p0(1− p0)

n

∼≈ N (0, 1) (250)
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Inferential Statistics

Inferential Statistics
Pause

Hypothesis Testing Exercises
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Inferential Statistics
Non-parametric Hypothesis Testing

A nonparametric test is a hypothesis test where it is not necessary (or not possible) to
specify the parametric form of the distribution(s) of the underlying population(s)

χ2 Test (Chi-Square Goodness of Fit Test)

Suppose that n independent random variables — Y1, . . . , Yn, each taking on one
of the values 1, 2, . . . , k — are to be observed and we are interested in testing the
null hypothesis that {pi, i = 1, . . . , k} is the probability mass function of the Yj .
That is, if Y represents any of the Yj , then the null hypothesis is

H0 : P{Y = i} = pi, i = 1, . . . , k, (251)

whereas the alternative hypothesis is

Ha : P{Y = i} ≠ pi, for some i = 1, . . . , k. (252)
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Inferential Statistics
Non-parametric Hypothesis Testing

To test the foregoing hypothesis, let Xi, i = 1, . . . , k, denote the number of the
Yj ’s that equal i. Then as each Yj will independently equal i with probability
P{Y = i}, it follows that, under H0, Xi is binomial with parameters n and pi.

Hence, when H0 is true,
E[Xi] = npi (253)

and so (Xi − npi)
2 will be an indication as to how likely it appears that pi indeed

equals the probability that Y = i.

When this is large, say, in relationship to npi, then it is an indication that H0 is
not correct.
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Inferential Statistics
Non-parametric Hypothesis Testing

Indeed such reasoning leads us to consider the following test statistic:

T =

k∑
i=1

(Xi − npi)
2

npi
, (254)

and to reject the null hypothesis when T is large. The critical region, at a
significance level α, is linked to a critical value c such that

PH0{T ≥ c} = α (255)

That is, we need to determine c so that the probability that the test statistic T is
at least as large as c, when H0 is true, is α. The test is then to reject the
hypothesis, at the α level of significance, when T ≥ c and to accept when T < c.

Emanuel A. R. Camacho (ISEC Lisboa) Data Science in Aerospace 2024/2025 188 / 217



Inferential Statistics
Non-parametric Hypothesis Testing

Assuming that H0 is true, for a n large, T will have a chi-square distribution
with k − 1 degrees of freedom. Hence, for n large (n ≥ 30 ∧ npi ≥ 5), c can be
taken to equal χ2

α,k−1, and so the approximate α-level test is

reject H0 if T ≥ χ2
α,k−1 or accept H0 otherwise

If the observed value of T is T = t, then the preceding test is equivalent to
rejecting H0 if the significance level α is at least as large as the p-value given by

p-value = PH0{T ≥ t} (256)

≈ P (χ2
k−1 ≥ t), (257)

where χ2
k−1 is a chi-square random variable with k − 1 degrees of freedom.
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Inferential Statistics
Non-parametric Hypothesis Testing

χ2 Test with Unspecified Parameters

We can also perform goodness of fit tests of a null hypothesis that does not
completely specify the probabilities {pi, i = 1, . . . , k}. The test statistic is now
defined as

T =

k∑
i=1

(Xi − np̂i)
2

np̂i
, (258)

where p̂i is now an estimated probability. It can then be proven that when n is
large, the test statistic T will have, when H0 is true, approximately a chi-square
distribution with k − 1−m degrees of freedom. In this context, m is the number
of unspecified parameters and that they are to be estimated by the method of
maximum likelihood.
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Inferential Statistics
Non-parametric Hypothesis Testing

χ2 Test with Unspecified Parameters

The test is, therefore, to

reject H0 if T ≥ χ2
α,k−1−m (259)

accept H0 otherwise (260)

An equivalent way of performing the foregoing is to first determine the value of
the test statistic T , say T = t, and then compute

p-value ≈ P{χ2
k−1−m ≥ t} (261)

The hypothesis would be rejected if α ≥ p-value.
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Inferential Statistics
Non-parametric Hypothesis Testing

The Kolmogorov-Smirnov Goodness of Fit Test

The Kolmogorov-Smirnov Goodness of Fit Test provides another way of testing
that the Yj come from the continuous distribution function F that is generally
more efficient than discretizing.

After observing Y1, . . . , Yn, let Fe be the empirical distribution function defined
by

Fe(x) =
#{i : Yi ≤ x}

n
(262)

That is, Fe(x) is the proportion of the observed values that are less than or equal
to x. Because Fe(x) is a natural estimator of the probability that an observation
is less than or equal to x, it follows that, if the null hypothesis that F is the
underlying distribution is correct, it should be close to F (x).
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Inferential Statistics
Non-parametric Hypothesis Testing

The Kolmogorov-Smirnov Goodness of Fit Test

Since this is so for all x, a natural quantity on which to base a test of H0 is the
test quantity

D = max
x

|Fe(x)− F (x)| (263)

where the maximum is over all values of x from −∞ to +∞. The statistics D is
called the Kolmogorov–Smirnov test statistic and can be computed using

D = max

{
j

n
− F (y(j)), F (y(j))−

j − 1

n
, j = 1, . . . , n

}
(264)
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Non-parametric Hypothesis Testing

The Kolmogorov-Smirnov Goodness of Fit Test

Suppose now that the Yj are observed and their values are such that D = d.
Since a large value of D would appear to be inconsistent with the null hypothesis
that F is the underlying distribution, it follows that the p-value for this data set
is given by

p-value = PF {D ≥ d} (265)

where we have written PF to make explicit that this probability is to be
computed under the assumption that H0 is correct (and so F is the underlying
distribution).
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It can be shown that a significance level α test can be obtained by considering
the quantity D∗ defined by

D∗ =
(√

n+ 0.12 + 0.11/
√
n
)
D (266)

Letting d∗α be such that
PF {D∗ ≥ d∗α} = α (267)

then the following are accurate approximations for d∗α for a variety of values:

d∗0.10 = 1.224, d∗0.05 = 1.358, d∗0.025 = 1.480, d∗0.01 = 1.626

The level α test would reject the null hypothesis that F is the distribution if the
observed value of D∗ is at least as large as d∗α.
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Tests of Independence

Consider a population that can be classified according to two distinct
characteristics, which we shall denote as the X-characteristic and the
Y -characteristic. We suppose that there are r possible values for the
X-characteristic and s for the Y -characteristic, and let

Pij = P{X = i, Y = j} (268)

for i = 1, . . . , r and j = 1, . . . , s. That is, Pij represents the probability that a
randomly chosen member of the population will have X-characteristic i and
Y -characteristic j.
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Tests of Independence

The different members of the population will be assumed to be independent.
Also, let

pi = P{X = i} =

s∑
j=1

Pij , i = 1, . . . , r (269)

and

qj = P{Y = j} =

r∑
i=1

Pij , j = 1, . . . , s (270)

That is, pi is the probability that an arbitrary member of the population will
have X-characteristic i, and qj is the probability it will have Y -characteristic j.
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Non-parametric Hypothesis Testing

Tests of Independence

We are interested in testing the hypothesis that a population member’s X- and
Y -characteristics are independent. That is, we are interested in testing

H0 : Pij = piqj , for all i = 1, . . . , r, j = 1, . . . , s (271)

against the alternative

H1 : Pij ̸= piqj , for some i, j i = 1, . . . , r, j = 1, . . . , s. (272)

To test this hypothesis, assume that from n members of the population, Nij have
simultaneously the X-characteristic i and Y -characteristic j. Since the quantities
pi, i = 1, . . . , r, and qj , j = 1, . . . , s are not specified by the null hypothesis, they
must first be estimated.
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Tests of Independence

The natural estimators of pi and qi are, respectively,

p̂i =
Ni

n
and q̂i =

Mj

n
(273)

where

Ni =

s∑
j=1

Nij , i = 1, . . . , r (274)

and

Mj =

r∑
i=1

Nij , j = 1, . . . , s (275)

Emanuel A. R. Camacho (ISEC Lisboa) Data Science in Aerospace 2024/2025 199 / 217



Inferential Statistics
Non-parametric Hypothesis Testing

Tests of Independence

The test statistic is now defined as

T =

s∑
j=1

r∑
i=1

(Nij − np̂iq̂j)
2

np̂iq̂j
(276)

It can then be proven that when n is large, the test statistic T will have, when
H0 is true, approximately a chi-square distribution with (r − 1)(s− 1) degrees of
freedom. At the approximate significance level α, the test should reject H0 when

T ≥ χ2
α,(r−1)(s−1) (277)

p-value ≈ P{χ2
(r−1)(s−1) ≥ T = t} (278)
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Regression
Regression

Relationship between a set of variables

In many situations, there is a single response variable Y , also called the
dependent variable, which depends on the value of a set of input, also called
independent, variables x1, . . . , xr. The simplest type of relationship between the
dependent variable Y and the input variables x1, . . . , xr is a linear relationship.

Y = β0 + β1x1 + · · ·+ βrxr (279)

However, such precision is almost never attainable, meaning that realistically,

Y = β0 + β1x1 + · · ·+ βrxr + e (280)

where e represents a random error.
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Regression
Regression

Relationship between a set of variables

The random error, e, is assumed to be a random variable having mean 0. This
implies that

E[Y |x] = β0 + β1x1 + · · ·+ βrxr (281)

This equation is called a linear regression equation that describes the regression
of Y on the set of independent variables x1, x2, . . . , xr. The quantities
β0, β1, . . . , βr are called the regression coefficients and must be estimated from a
set of data. A simple linear regression supposes a linear relationship between the
mean response and the value of a single independent variable, expressed as

Y = α+ βx+ e (282)
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Least Squares Estimators of the Regression Parameters

Suppose that the responses Yi corresponding to the input values xi, i = 1, . . . , n
are to be observed and used to estimate α and β in a simple linear regression
model.

Determine estimators of α and β

Considering A an estimator of α and B an estimator of β

Estimator response to the input variable xi is A+Bxi

Since the actual response is Yi, the squared difference between the actual
and estimator reponses is (Yi −A−Bxi)

2
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Least Squares Estimators of the Regression Parameters

With A and B being the estimators of α and β, respectively, then the sum of the
squared differences between the estimated responses and the actual response
values is given by

SS =

n∑
i=1

(Yi −A−Bxi)
2 (283)

The method of least squares chooses as estimators of α and β the values of A and
B that minimize SS. To determine these estimators, we differentiate SS first
with respect to A and then to B.
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Least Squares Estimators of the Regression Parameters

∂SS

∂A
= −2

n∑
i=1

(Yi −A−Bxi) = 0 (284)

n∑
i=1

Yi = nA+B

n∑
i=1

xi (285)

(
n∑

i=1

Yi

)/
n =

(
nA+B

n∑
i=1

xi

)/
n (286)

Y = A+Bx ⇒ A = Y −Bx (287)
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Least Squares Estimators of the Regression Parameters

∂SS

∂B
= −2

n∑
i=1

xi(Yi −A−Bxi) = 0 (288)

n∑
i=1

xiYi = A

n∑
i=1

xi +B

n∑
i=1

x2i (289)

n∑
i=1

xiYi = (Y −Bx)

n∑
i=1

xi +B

n∑
i=1

x2i (290)

B =

(
n∑

i=1

xiYi − nxY

)/( n∑
i=1

x2i − nx2

)
(291)
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Estimated Regression Line

The least squares estimators of α and β corresponding to the data set
xi, Yi, i = 1, . . . , n are, respectively,

A = Y −Bx (292)

B =

(
n∑

i=1

xiYi − nxY

)/( n∑
i=1

x2i − nx2

)
(293)

The straight line A+Bx is called the estimated regression line.
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Evaluating the Estimated Regression Line

The value of R2, called the coefficient of determination, is often used as an
indicator of how well the regression model fits the data, with a value near 1
indicating a good fit, and one near 0 indicating a poor fit. It is defined as

R2 = 1−

n∑
i=1

(Yi −A−Bxi)
2

n∑
i=1

(Yi − Y )2
(294)
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Statistical Inferences about the Regression Parameters

Y = α+ βx+ e e ∼ N (0, σ2) (295)

Statistical Inference about β√
(n− 2)Sxx

SSr
(B − β) ∼ tn−2 (296)

Statistical Inference about α√
(n− 2)Sxx∑

i x
2
iSSr

(A− α) ∼ tn−2 (297)
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Statistical Inferences about the Regression Parameters

Statistical Inference about α+ βx0

A+Bx0 − (α+ βx0)√(
1

n
+

(x0 − x)2

Sxx

)(
SSR

n− 2

) ∼ tn−2 (298)

Statistical Inference about Y (x0)

Y (x0)− (A+Bx0)√(
1 +

1

n
+

(x0 − x)2

Sxx

)(
SSR

n− 2

) ∼ tn−2 (299)
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Analysis of Residuals: Assessing the Model

Y = α+ βx+ e e ∼ N (0, σ2) (300)

To analyze the residuals, we start by normalizing, or standardizing, the residuals
by dividing them by √

SSR/(n− 2), (301)

the estimate of the standard deviation of the Yi.The resulting quantities

Yi − (A+Bxi)√
SSR

n− 2

, i = 1, . . . , n (302)

are called the standardized residuals.
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Analysis of Residuals: Assessing the Model

When the simple linear regression model is correct, the standardized residuals

Yi − (A+Bxi)√
SSR

n− 2

, i = 1, . . . , n, (303)

are approximately independent standard normal random variables. This implies
that they should be randomly distributed about 0 with about 95 percent of their
values being between −2 and +2. In addition, a plot of the standardized
residuals should not indicate any distinct pattern. Indeed, any indication of a
distinct pattern should make one suspicious about the validity of the assumed
simple linear regression model.
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Transforming to Linearity

In many situations, it is clear that the mean response is not a linear function of
the input level. In such cases, if the form of the relationship can be determined it
is sometimes possible, by a change of variables, to transform it into a linear form.

For instance, let us assume that W (t) is approximately related to t by the
functional form

W (t) ≈ ce−dt (304)

Using logarithms (inverses of exponential functions), this equation can be
expressed as

logW (t) ≈ log c− dt (305)

which can be modeled as a linear regression.
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Other Regressions

Polynomial Regression

In situations where the functional relationship between the response Y and the
independent variable x cannot be adequately approximated by a linear
relationship, it is sometimes possible to obtain a reasonable fit by considering a
polynomial relationship.

Multiple Linear Regression

In the majority of applications, the response of an experiment can be predicted
more adequately not on the basis of a single independent input variable but on a
collection of such variables.
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