Computational Applied Mathematics

ESCOLA DE GESTÃO, ENGENHARIA E AEBONÁLTICA

Exercices

Taylor Series

- 1. Determine the fourth-order Taylor polynomial of $f(x) = \cos(x)$ centered at 0. SOLUTION HERE
- 2. Consider the function $f(x) = \sin x$. Approximate $f(\pi/8)$ and $f(10\pi/9)$ using the fifth-order Taylor polynomial centered at 0.

SOLUTION HERE

- 3. What is the second term in the Taylor series of $\sqrt[4]{4x-1}$ about 4.25? SOLUTION HERE
- 4. In the Taylor series (about $\pi/4$) for the function $\sin x + \cos x$, find the third nonzero term. SOLUTION HERE
- 5. In the Taylor series for the function $3x^2 7 + \cos x$ (expanded in power of x), what is the coefficient of x^2 ?

Numerical Differentiation

1. Calculate the first-order derivative of the function $g(x) = e^{\sin(x)}$ at the point x = 0.5 using first-order finite differences (forward, backward, and central) with h = 0.01.

SOLUTION HERE

2. Calculate the second-order derivative of the function $g(x) = e^{\cos(x)}$ at the point x = 0.5 using second-order finite differences (forward, backward, and central) with h = 0.01.

SOLUTION HERE

3. The distance traveled in meters by a rocket at each second is given by the following values:

$$t[s]$$
 0
 1
 2
 3
 4
 5

 $y[m]$
 0.0
 2.5
 7.8
 18.2
 51.9
 80.3

Use numerical differentiation to approximate the velocity and acceleration at each point. SOLUTION HERE

4. Determine the second-order Taylor polynomial of $f(x) = x^x \cos(e^{x^2}) + \ln(\sin(x^3))$ centered at 1. Use numerical differentiation instead of analytical differentiation.

SOLUTION HERE

5. Consider the function $f(x) = \sin(x)$ at $x_0 = 1.0$, $x_1 = 1.4$, and $x_2 = 2.0$. Approximate the derivative $f'(x_1)$ at x_1 using the divided difference formula. Compare this approximation with the exact derivative.

$$f(x_0) \approx f(x_1) + f'(x_1)(x_0 - x_1)$$

$$f(x_2) \approx f(x_1) + f'(x_1)(x_2 - x_1)$$

$$f(x_0) + f(x_2) = 2f(x_1) + 2f'(x_1)(x_0 - x_1)(x_2 - x_1)$$

$$f'(x_1) = \frac{f(x_0) - 2f(x_1) + f(x_2)}{2(x_0 - x_1)(x_2 - x_1)}$$

$$f'(x_1) \approx \frac{(x_1 - x_2)^2 (f(x_0) - f(x_1)) + (x_1 - x_0)^2 (f(x_2) - f(x_1))}{(x_1 - x_0)(x_1 - x_2)(x_2 - x_0)}$$

Zeros

1. Using the bisection method, determine the point of intersection of the curves given by

$$y = x^3 - 2x + 1$$
 and $y = x^2$.

SOLUTION HERE

2. Find a root of the equation $6(e^x - x) = 6 + 3x^2 + 2x^3$ between -1 and +1 using the bisection method.

SOLUTION HERE

3. Find a root of the equation $6(e^x - x) = 6 + 3x^2 + 2x^3$ between -1 and +1 using the false position method.

SOLUTION HERE

4. Use the false position method to find a zero of the equation

$$\lambda \cosh\left(\frac{50}{\lambda}\right) = \lambda + 10$$

SOLUTION HERE

- 5. If Newton's method is used on $f(x) = x^3 x + 1$ starting with $x_0 = 1$, what will x_1 be? SOLUTION HERE
- 6. Using the Newton's method, locate the root of $f(x) = e^{-x} \cos x$ that is nearest $\pi/2$. SOLUTION HERE
- 7. Carry out three iterations of Newton's method using $x_0 = 1$ and $f(x) = 3x^3 + x^2 15x + 3$. SOLUTION HERE
- 8. If the secant method is used on $f(x) = x^5 + x^3 + 3$ and if $x_{n-2} = 0$ and $x_{n-1} = 1$, what is x_n ?

SOLUTION HERE

9. Use the secant method to find the zero near -0.5 of $f(x) = e^x - 3x^2$.

SOLUTION HERE

10. Knowing that $f(x) = \frac{\cos(\ln x)}{e^x}$, use the secant method to find the zero near 0.25. SOLUTION HERE

Extrema of Functions

1. Use the golden section algorithm to determine the minimum of $f(x) = 2x^3 - 9x^2 + 12x + 2$ on [0,3].

SOLUTION HERE

2. Consider the function $f(x) = -1.5x^6 - 2.4x^4 + 12x$. Estimate the value of $x \in [0, 2]$ that maximizes f(x) by applying the quadratic interpolation method three times with $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$.

SOLUTION HERE

3. Find an estimate for the minimum of $f(x) = x + \frac{1}{x}$ using the quadratic interpolation method with $x_0 = 0.1$, $x_1 = 0.5$, $x_2 = 1.0$.

SOLUTION HERE

4. Find an estimate of the maximizer of $f(x) = 2x^3 - 9x^2 + 12x$ in [0,2] using Newton's method with $x_0 = 2$ and iterating 3 times.

SOLUTION HERE

5. Using the Newton's method, locate the minimum of $f(x) = 0.01x^2 + \frac{500000}{0.25x^2}$ starting with $x_0 = 10$.

Systems of Equations

1. Calculate the ℓ_1 , ℓ_2 and ℓ_{∞} norms of

$$\begin{bmatrix} 10 & 7 & 15 \end{bmatrix}^T$$

SOLUTION HERE

2. Calculate the ℓ_1 , ℓ_F and ℓ_{∞} norms of

$$\begin{bmatrix} 3 & 4 & 3 \\ 1 & 5 & -1 \\ 6 & 3 & 7 \end{bmatrix}$$

SOLUTION HERE

3. Solve the system of equations

$$\begin{cases} 3x_1 + 4x_2 + 3x_3 = 10 \\ x_1 + 5x_2 - x_3 = 7 \\ 6x_1 + 3x_2 + 7x_3 = 15 \end{cases}$$

using naive Gaussian elimination, Gaussian elimination with partial and complete pivoting.

SOLUTION HERE

4. Solve the system of equations

$$\begin{bmatrix} 1 & -1 & 2 & 1 \\ 3 & 2 & 1 & 4 \\ 5 & 8 & 6 & 3 \\ 4 & 2 & 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix},$$

using the Gauss-Jordan elimination.

SOLUTION HERE

5. Let

$$\begin{bmatrix} 4 & 1 & -1 \\ 1 & 2 & 4 \\ 1 & 5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 9 \\ 11 \end{bmatrix}.$$

Carry out a number of iterations of the Jacobi iteration, starting with the $[1, 1, 1]^T$ initial vector. Start by verifying diagonal dominance.

6. Let

$$\begin{bmatrix} -2 & 1 & 0 \\ -1 & 3 & -1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ -5 \end{bmatrix}.$$

Carry out a number of iterations of the Gauss-Seidel iteration, starting with the zero initial vector. Start by verifying diagonal dominance.

SOLUTION HERE

7. Use the Newton's method to solve the system of equations

$$\begin{cases} x + y + z = 3 \\ x^2 + y^2 + z^2 = 5 \\ e^x + xy - xz = 1 \end{cases},$$

starting with $[0.1, 1.2, 2.5]^T$.

SOLUTION HERE

8. Solve this pair of simultaneous nonlinear equations by first eliminating y and then solving the resulting equation in x by Newton's method. Start with the initial value $x_0 = 1.0$.

$$\begin{cases} x^3 - 2xy + y^7 - 4x^3y = 5\\ y\sin x + 3x^2y + \tan x = 4 \end{cases}$$

$$y \sin x + 3x^2y + \tan x = 4 \Rightarrow y = \frac{4 - \tan x}{\sin x + 3x^2}$$

$$x^{3} - 2xy + y^{7} - 4x^{3}y = 5 \Rightarrow$$

$$\Rightarrow x^{3} - \frac{2x(4 - \tan x)}{\sin x + 3x^{2}} + \left(\frac{4 - \tan x}{\sin x + 3x^{2}}\right)^{7} - \frac{4x^{3}(4 - \tan x)}{\sin x + 3x^{2}} - 5 = 0$$

Interpolation & Approximation

1. Use the Lagrange interpolation process to obtain a polynomial of least degree that assumes these values:

SOLUTION HERE

2. Use the Newton interpolation process to obtain a polynomial of least degree that assumes these values:

SOLUTION HERE

3. Determine the natural cubic spline that interpolates the function at the given points.

SOLUTION HERE

4. Using the least-square method, fit the data in the table

by a parabola.

SOLUTION HERE

5. Fit a function of the form $y = a \ln x + b \cos x + ce^x$ to the following table values

SOLUTION HERE

6. Using the least-square method, fit the data in the table

by a function $y = a \sin(bx)$. Do it with and without linearization.

Numerical Integration

1. What is the numerical value of the composite trapezoid rule applied to the reciprocal function $f(x) = x^{-1}$ using the points 1, 4/3, 2?

SOLUTION HERE

2. Approximate $\int_0^2 2^x dx$ using the composite trapezoid rule with h = 1/2.

SOLUTION HERE

3. Approximate $\int_1^2 f(x) dx$ given the table of values

Compute an estimate by the composite trapezoid rule.

SOLUTION HERE

4. Use the composite trapezoidal and Simpson's rules with 4 sub-intervals to approximate the following integral and determine an upper bound for the error.

$$\int_{1}^{2} x \ln(x) \, dx$$

SOLUTION HERE

5. Consider the integral

$$\int_{1}^{1.6} \frac{2x}{x^2 - 4} \, dx$$

Apply all of the Newton-Cotes closed rules.

SOLUTION HERE

6. Consider the integral

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \, dx$$

Because it has singularities at the endpoints of the interval [-1,1], closed rules cannot be used. Apply all of the Newton-Cotes open rules. Compare and explain these numerical results to the true solution, which is

$$\int_{-1}^{1} (1 - x^2)^{-1/2} dx = \arcsin x \Big|_{-1}^{1} = \pi.$$

Ordinary Differential Equations

1. Consider the initial value problem

$$\begin{cases} y' = -ty \\ y(0) = 1 \end{cases}, \quad t \in [0, +\infty[. \quad \text{(solution : } y(t) = e^{-t^2/2}).$$

Calculate an approximation for the solution at t = 0.5, using the Euler method with step h = 0.1.

SOLUTION HERE

2. Given the initial value problem

$$\begin{cases} y' = \frac{y}{1+t^2} \\ y(0) = 1 \end{cases}, \quad 0 \le t \le 1 \quad \left(\text{solution} : y(t) = e^{\arctan(t)} \right).$$

Use the second-order Taylor method to compute an approximate value y_5 for y(1).

SOLUTION HERE

3. Using Euler's method, compute an approximate value for x(2) for the differential equation

$$x' = 1 + x^2 + t^3,$$

with the initial value x(1) = -4 using 100 steps.

SOLUTION HERE

4. Consider the ordinary differential equation

$$\begin{cases} x' = t^2 + tx' - 2xx' \\ x(0) = 1 \end{cases}.$$

Take three steps using the Runge-Kutta method of order 2 with step h = 0.1.

SOLUTION HERE

5. Given the initial value problem

$$\begin{cases} y' = e^t y^2 + e^3 \\ y(2) = 4 \end{cases}.$$

Use the fourth-order Runge-Kutta method to compute an approximate value y_5 for y(5) SOLUTION HERE

6. Find approximations for the solution of the initial value problem

$$\begin{cases} y' = -ty^2 \\ y(1) = 2 \end{cases},$$

for $t \in [1, 2]$, with h = 0.2. Use the 2^{th} and 4^{th} order Adams-Bashforth-Moulton predictor-corrector method.

Systems of Ordinary Differential Equations

1. Given the system

$$\begin{cases} x' = 2x - 3y \\ y' = y - 2x \\ x(0) = 8, \ y(0) = 3 \end{cases}$$

apply Euler's method to estimate x(0.1) and y(0.1) with two integration steps.

SOLUTION HERE

2. Use the 2^{th} order Runge-Kutta method, with h = 0.05, to estimate the values y(0.1) and x(0.1) of the particular solution of

$$\begin{cases} x' = 2t - 3y \\ y' = t - x^2 \end{cases},$$

with x(0) = 2 and y(0) = 1.

SOLUTION HERE

3. Convert the third-order differential equation

$$y''' + ty'' - yy' + y^2 = \cos(t)$$

to a system of first-order differential equations with initial conditions

$$y(1.2) = -1, \quad y'(1.2) = 0, \quad y''(1.2) = 1.$$

SOLUTION HERE

4. Determine an approximate value for y(0.5) using the Euler and second-order Taylor methods for the initial value problem

$$y'' + 2y' + 5y = e^{-t}\sin(t), \quad y(0) = 0, \quad y'(0) = 1$$

SOLUTION HERE

5. Determine an approximate value for y(0.5) using the second-order Adams-Bashforth-Multon method for the initial value problem

$$y'' - 3y' + 2y = 4e^{2t}$$
, $y(0) = -3$, $y'(0) = 5$